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The PM10-2.5 DQO Model 
 
 
This is a companion document to the report titled: Sensitivity of the PM10-2.5 Data Quality 
Objective to Spatially Related Uncertainties  provided to the Clean Air Scientific Committee 
(CASAC) for the meeting scheduled for September 21-22, 2005. 
 
 
1.0  THE SIMULATION MODEL 
 
 The simulation model used for establishing the PM10-2.5  DQOs and equivalency method 
requirements is fairly complex.  It was developed as a generalization of the model used for the 
PM2.5 DQO simulation model.  The basic model was first implemented in MathCad and then 
reprogrammed in C++ with corresponding functions to increase the speed of execution.  The C++ 
functions have been successfully tested against the MathCad functions.  Consequently, it suffices 
to describe the MathCad functions that are much easier to read.  The MathCad version is 
described below. 
 
 
2.0  CONCEPTUAL MODELS 
 
 There are several layers to the conceptual model.  The PM10-2.5 and PM2.5 components are 
viewed separately.  Since the PM2.5 data generation is simpler and motivates the rest, it is 
described first.  Within the code, however, it is easier to generate it last. 
 
2.1  The PM2.5 Conceptual Model 
 
 The PM2.5 component is thought of as a spatially uniform (within the scale of the 
monitor) process with a sinusoidal mean having one period per year.  The basic sine curve has its 
modulus and vertical shift related so that models vary multiplicatively.  This is a very important 
point for the implementation, as all the parameters have a multiplicative interpretation.  This 
means that a site is associated with a fixed ratio between the highest point on the sign curve and 
its lowest point.  Consequently, the sine wave is parameterized as: 
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where A is a multiplicative factor, R is the seasonal ratio, and day is the number of days into the 
simulation period (day ranges from 1 to 3x365).  Since three full years are modeled, there is no 
need for a phase shift in the PM2.5 component. 
 
 From this mean the true day-to-day concentrations are generated as lognormally 
distributed random deviations from the mean with a constant coefficient of variation (CV).  
These deviations are allowed to have autocorrelation that is modeled as the exponential of a 
simple autoregressive process. 
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2.2  The PM10-2.5  Conceptual Model 
 
 The coarse portion of the PM is simulated as a random field that varies with correlation 
both spatially and temporally.  The spatial domain is simulated on a grid that is supposed to 
represent a neighborhood scale monitor with grid points located every 2 km in a square grid that 
is 8 km on a side.  The temporal variation also includes a seasonal pattern throughout the 
three-year simulation periods.  For each grid point, separate three-year design values are 
computed.  Then the grid’s design values (one for the annual standard and one for the daily 
standard) are computed by averaging over the grid-point specific design values.  Finally, this 
design value is compared to the design value for the simulated observations corresponding to the 
center point.  This whole process is repeated 1,000 times to determine the probability that the 
observed-design value correctly predicts whether or not the grid’s true-design value is above the 
standard. 
 

 
Figure A-1.  Simulation grid points. 
 
 The temporal pattern for the coarse fraction is also based on random deviations from a 
sinusoidal pattern.  The pattern can have either one or two periods per year and can be phase 
shifted from the fine PM portion.  The random deviations can have autocorrelation and be 
correlated with the random deviations of the fine fraction. 
 
 
3.0  PROGRAMMING DETAILS 
 
 The details are made somewhat complex by the need to pre-specify the various 
correlations, variances, and other model parameters.  To achieve the desired results, the 
simulation is done with a series of functions/modules with separate tasks.  Each of these is 
described below. 
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 Notes: 
 

1. The indexing always starts with 0. 
2. The parameter vector is referred to as parms. 
3. Within the code, A<n> refers to the nth column of the matrix A. 
4. The code shown is the MathCad code that was used to develop the model.  The 

C++ code is tested against the MathCad code.  To accommodate that testing, the 
format of the final output has been modified from what is currently shown. 

 
3.1  Scaled Design Value Distribution 
 
 Input:  The vector parms of parameter values. 
 

 
 
 This function forms the main simulation loop.  For each repetition of the loop, a 
three-year set of scaled true concentrations are generated for each point in the grid.  The output 
of the Gen_truth, however, only contains the simulation values for the center grid point and a 
summary appended to the end.  The next steps in the code separate the simulation values and 
summary for use later in the code.  The fourth step in the loop generates the observations 
corresponding to the scaled true concentrations.  The final step in the loop summarizes the 
observed-design values for this three-year simulation.  The entire loop is repeated as often as is 
practical and is controlled by the value of the global variable reps. 
 
 The output of the function is a collection of scaled design values that all correspond to 
having the mean over the grid points of the design values of the true concentrations equal to 1.  
The scaling is such that multiplying the simulated observed-design values by 20 results in a set 
of simulated observed-design values.  These values all correspond to examples with simulated 
true concentrations such that the mean of the true-design values over the grid points is 
exactly 20.  This is true for both the daily standard design values and the annual standard design 
values.  (Note that 20 is not the value of the long-term mean for the hypothetical site.) 
 

Gen_scaled_dist parms( ) Seed 1233547( )

bchol BChol parms( )←

in Gen_truth bchol parms,( )←

X submatrix in 0, rows in( ) 2−, 0, cols in( ) 1−,( )←

tm inrows in( ) 1− 0,←

Y Gen_obs X parms,( )←

Z k〈 〉 Cal_pobs Y parms, tm,( )←

k 0 reps 1−..∈for

ZT

:=
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3.2  The Cholesky Decomposition Matrix 
 
 Input:  parms, the vector of simulation parameters. 
 

 
 
 Note: 
 
 The matrix multiplication of the Cholesky decomposition of a matrix A and a 

vector/matrix of values independently drawn from a standard normal distribution, N(1,0), 
results in a vector/matrix with the elements that have a variance-covariance matrix equal 
to A.  We use this to create the user-specified spatial correlation structure.  Specifically, 
this function creates the Cholesky decomposition of the spatial correlation matrix, except 
when the sill is set to 0.  When the sill is set to zero, the matrix is all zeros.  In either case, 
a separate temporal pattern is added to reflect the fact that the temporal variance is larger 
than the spatial variance.  An exponential spatial correlation is assumed.  The factor of 2 
in the exponential is to reflect the fact that the grid points are 2 km apart. 

 

 BChol parms( )

x5 i⋅ j+ 5 s⋅ t+, parms22 exp
i s−

j t−
⎛
⎜
⎝

⎞
⎠

−
2

parms23
⋅

⎡
⎢
⎣

⎤
⎥
⎦

⋅←

t 0 4..∈for

s 0 4..∈for

j 0 4..∈for

i 0 4..∈for

out cholesky x( )←

parms22 0>if

out24 24, 0← parms22 0if

out

:=
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3.3  The Coarse Mass Deviations Generator 
 
 Input:  The matrix bchol from the function BChol and parms, the vector of simulation 

parameters. 
 

 
 
 Notes: 
 
 This function creates the (multiplicative) temporal deviations of the long-term trend for 

the PM10-2.5  component.  The first loop creates an autocorrelated temporal sequence for 
all of the grid points and an extra sequence.  The first 25 sequences are then given the 
desired spatial correlation structure by multiplying by the Cholesky decomposition.  
However, the spatial variation can be less than temporal variance.  This is fixed by 
adding a spatially uniform temporal sequence to all of the points in the grid based on the 
“extra” sequence generated in the first loop.  Since everything has the same temporal 
autocorrelation, then the end result has the A1 structure (Xn+1 = αXn + Yn+1, where the Ys 
are independent with an appropriate variance). 
 
Also, note that there is a very short “burn in.”  The temporal sequences are generated for 
a slightly longer period than needed by the rest of the program.  This is needed to adjust 
for the fact that the A1 structure does not hold initially. 

 

Gen_CM_deviations bchol parms,( ) tmp 0〈 〉 rnorm 26 0, 1,( )←

tmp 0〈 〉 tmp 0〈 〉 mean tmp( )−←

tmp i〈 〉 rnorm 26 0, 1,( ) 1 parms13( )2−⋅ tmp i 1−〈 〉
parms13⋅+←

i 1 365 3⋅ 10+..∈for

tmp2 bchol submatrix tmp 0, 24, 11, 3 365⋅ 10+,( )⋅←

tmp2 i〈 〉 tmp2 i〈 〉 parms16( )2 parms22− tmp25 i 10+,⋅+←

i 0 365 3⋅ 1−..∈for

tmp2T

:=
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3.4  The Fine Mass Deviations Generator  
 
 Input:  The matrix CM_dev from the function Gen_CM_deviations, and parms, the vector 

of simulation parameters. 
 

 
 

Note: 
 
As mentioned earlier, it turns out to be easier to generate the fine mass deviations after 
generating the coarse mass deviations.  The reason is that, in general, we want sequences 
that have a distinct autocorrelations and are correlated with each other either spatially or 
just through time.  This function takes as an input the coarse mass deviations (although it 
only uses the center point).  The constants x, k, and y are adjusted to yield 
(approximately) the desired correlations. 

 

Gen_FM_deviations CM_dev parms,( ) x parms14

parms15

parms16
⋅

1 parms12 parms13⋅−( )
1 parms13( )2 parms14( )2⋅−⎡
⎣

⎤
⎦

⋅←

a parms14( )2←

b parms12( )2←

c parms13( )2 parms14( )2⋅←

d 2 parms14( )2⋅ parms13⋅ parms12⋅←

y
1 a− b− c− d+

1 parms13( )2 parms14( )2⋅−
←

k
parms12 parms14( )2 parms13⋅−⎡
⎣

⎤
⎦

1 parms13( )2 parms14( )2⋅−
←

tmp rnorm 3 365⋅ 0, parms15,( )←

tmp0 CM_dev 0 12, parms14⋅
parms15

parms16
⋅ tmp0 1 parms14( )2−⎡

⎣
⎤
⎦⋅+←

tmpi x CM_dev i 12,⋅ k tmpi 1−⋅+ y tmpi⋅+←

i 1 3 365⋅ 1−..∈for

tmp

:=
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3.5  The True Concentrations Generator 
 

Input:  The matrix bchol, from the function BChol, and parms, the vector of simulation 
parameters. 

 

 
 

Notes: 
 
This function calls the previous two functions and combines them to create the sequences 
of true concentrations with the appropriate long-term seasonal trends, except that 

Gen_truth bchol parms,( ) X Gen_CM_deviations bchol parms,( )←

z Gen_FM_deviations X parms,( )←

f25 e

ln parms15( )2 1+⎡⎣ ⎤⎦
⎡
⎣

⎤
⎦

2
−

2
←

f10 e

ln parms16( )2 1+⎡⎣ ⎤⎦
⎡
⎣

⎤
⎦

2
−

2
←

B25
1− parms18+

1 parms18+
←

B10
1− parms19+

1 parms19+
←

Truth25j 1 B25 sin
j 2⋅ π⋅

365
⎛⎜
⎝

⎞
⎠

⋅+⎛⎜
⎝

⎞
⎠

exp zj( )⋅ f25⋅←

TruthC j〈 〉 1 B10 sin
j 2⋅ π⋅ parms21⋅

365

parms20

12
2⋅ π⋅+

⎛
⎜
⎝

⎞

⎠
⋅+

⎛
⎜
⎝

⎞

⎠
exp XT( ) j〈 〉⎡

⎣
⎤
⎦⋅ f10⋅

⎡
⎢
⎣

⎤
⎥
⎦

←

j 0 3 365⋅ 1−..∈for

trans_tC TruthCT←

tmp1i Cal_pt trans_tC i〈 〉 parms,( )←

i 0 24..∈for

tm mean tmp1( )←

out augment Truth25 parms17⋅ trans_tC 12〈 〉
parms17 Truth25⋅+,⎛

⎝
⎞
⎠

1
tm
⋅←

out rows out( ) 0,
mean trans_tC( )

tm
←

out

:=
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everything is scaled to have a daily true-design value of 1.  The output includes the 
annual true-design value corresponding to the scaled sequences. 
 
Note that the output only includes the temporal sequences for the center grid and a 
summary value. 

 
3.6  The Observed Values Generator 
 

Input:  The matrix of (scaled) true concentrations from the function Gen_truth and parms, 
the vector of simulation parameters. 

 

 

Gen_obs truth parms,( ) v10 0←

v20 0←

min floor
j 365⋅

4 parms5⋅
⎛
⎜
⎝

⎞

⎠
parms5⋅ ii 365⋅+←

max floor
j 1+( ) 365⋅

4 parms5⋅
⎡
⎢
⎣

⎤
⎥
⎦

parms5⋅ ii 365⋅+←

num_sampled25 ceil
max min−( )

parms5
parms6⋅⎡

⎢
⎣

⎤
⎥
⎦

←

num_sampled10 ceil
max min−( )

parms5
parms7⋅⎡

⎢
⎣

⎤
⎥
⎦

←

v1 stack v1 parms5 Select
max min−( )

parms5
num_sampled25,⎡

⎢
⎣

⎤
⎥
⎦

⋅ min+,⎡
⎢
⎣

⎤
⎥
⎦

←

v2 stack v2 parms5 Select
max min−( )

parms5
num_sampled10,⎡

⎢
⎣

⎤
⎥
⎦

⋅ min+,⎡
⎢
⎣

⎤
⎥
⎦

←

j 0 3..∈for

ii 0 2..∈for

k 0←

vk v1ii←

k k 1+←

v1ii v2jjif

jj 1 rows v2( ) 1−..∈for

ii 1 rows v1( ) 1−..∈for

total_sampled rows v( )←

e augment rnorm total_sampled 0, 1,( ) rnorm total_sampled 0, 1,( ),( )←

obs i 1, truth vi 1,( ) 1 parms11+( )⋅ 1 ei 0, parms9⋅+( )⋅⎡⎣ ⎤⎦
truth vi 0, 1 parms10−( )⋅ 1 ei 1, parms8⋅+( )⋅−←

obs i 0, truth vi 1, 1 parms11−( )⋅ 1 ei 0, parms9⋅+( )⋅⎡⎣ ⎤⎦
truth vi 0, 1 parms10+( )⋅ 1 ei 1, parms8⋅+( )⋅−←

obs i 0, 0← obs i 0, 0<if

obs i 1, 0← obs i 1, 0<if

i 0 total_sampled 1−..∈for

augment obs v,( )

:=
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Note: 
 
This function takes in the true concentrations for the center grid, selects the days 
throughout the 3-year period that will have corresponding sample values, and then 
simulates the observed values.  Two versions of the observed values are generated:  one 
corresponding to the maximum positive bias and one corresponding to the most extreme 
negative bias.  The last column gives the number of days into the simulation to which the 
observed values correspond. 

 
3.7  The Design Values Calculator for the Observations 
 

Input:  The matrix X of (scaled) observed concentrations from the function Gen_obs, 
parms, the vector of simulation parameters, and the scaling factor, tm, for switching 
between the daily and annual standard. 

 

 

Cal_pobs X parms, tm,( ) j 0←

k 0←

j j Xi 2, 365<( )+←

k k Xi 2, 365 2⋅<( )+←

i 0 rows X( ) 1−..∈for

r0 floor j parms4⋅( )←

r1 floor k j−( ) parms4⋅⎡⎣ ⎤⎦←

r2 floor rows X( ) k−( ) parms4⋅⎡⎣ ⎤⎦←

p0 i, sort submatrix X 0, j 1−, i, i,( )( ) r0( )←

am0 i, mean submatrix X 0, j 1−, i, i,( )( )←

i 0 1..∈for

p1 i, sort submatrix X j, k 1−, i, i,( )( ) r1( )←

am1 i, mean submatrix X j, k 1−, i, i,( )( )←

i 0 1..∈for

p2 i, sort submatrix X k, rows X( ) 1−, i, i,( )( ) r2( )←

am2 i, mean submatrix X k, rows X( ) 1−, i, i,( )( )←

i 0 1..∈for

mi mean p i〈 〉( )←

mi 2+ mean am i〈 〉( ) 1
tm
⋅←

i 0 1..∈for

m

:=
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Note: 
 
Since the number of days with both PM10 and PM2.5 data can vary, the function first 
determines to which year the data values correspond.  Then, as with real data, annual 
values are evaluated for each of the three years.  Finally, these are averaged over the 
three years to obtain the two scaled design values for the simulation for the positive bias 
case and two scaled design values for the negative bias case. 

 
3.8  The Percentile Standard Calculator for the Truth 
 

Input:  A vector X of (scaled) true concentrations and the vector parms, of the input 
parameters. 

 

 
 

Note: 
 
This function is less complicated than the version for the observations since the data are 
always complete with the same number of data points per year.  Moreover, this 
completeness property implies that the annual design value is just the mean of all of the 
values and is not computed by this function. 

 
3.9  Random Selection of Sample Days 
 

Input:  Integers n and k. 
 

 

Cal_pt X parms,( ) r floor floor
rows X( )

3
⎛⎜
⎝

⎞
⎠

parms4⋅⎛⎜
⎝

⎞
⎠

←

pi sort submatrix X i floor
rows X( )

3
⎛⎜
⎝

⎞
⎠

⋅, i 1+( ) floor
rows X( )

3
⎛⎜
⎝

⎞
⎠

⋅ 1−, 0, 0,⎡⎢
⎣

⎤⎥
⎦

⎡⎢
⎣

⎤⎥
⎦

r←

i 0 2..∈for

mean p( )

:=

Select n k,( ) j 0←

v j i←

j j 1+←

rnd 1( ) n i−( )⋅ k j−( )<[ ]if

i 0 n 1−..∈for

v

:=
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Note: 
 
This function randomly selects k integers between 0 and n-1.  This is an auxiliary 
function used in the generation of the observations to randomly pick the days that will 
have PM10 data and which will have PM2.5 data (the selections are made independent of 
each other). 

 
3.10  Decision Performance Calculation 
 

Input:  A scalar x equal to the desired observed-design value target, an indicator std_ind 
to indicate whether the daily or annual standard is being considered, the matrix output tt 
from the function Gen_scaled_dist, and the vector parms of input parameters. 

 

 
Note: 
 
This function computes the probability that the observed-design value exceeds the 
standard given that the design value of the true concentrations is equal to x. 

 
 

P_obdv_ge_stnd x std_ind, tt, parms,( )

std parms2←

round 0.5←

std_ind 0if

std parms3←

round 0.05←

otherwise

mm tt x⋅←

rr0 0←

rr1 0←

rr0 mmk 0 std_ind+, std round+( )>⎡⎣ ⎤⎦ rr0+←

rr1 mmk 1 std_ind+, std round+( )>⎡⎣ ⎤⎦ rr1+←

k 0 reps 1−..∈for

rr rr
1

reps
⋅←

rr

:=
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3.11  Gray Zone and Performance Curve Computation 
 

Input:  The vector parms of input parameters. 
 

 
Note: 
 
In addition to computing the gray zones, this function computes the values for plotting 
the performance curves. 

 
 
 The final output consists of a matrix with 102 rows and 6 columns.  The last row has the 
gray zones for the daily and annual standard.  The other rows contain the values for plotting the 
decision performance curves.  The first two columns are the probabilities of observing design 
values greater than the daily standard for the positive and negative bias cases.  The third column 
consists of the daily true-design values for the grid.  The fourth and fifth columns are the 
probabilities of observing design values greater than the annual standard for the positive and 
negative bias cases.  The sixth column consists of the annual true-design values for the grid. 
 
 

Gray_zone parms( ) tt Gen_scaled_dist parms( )←

out_day Gray_zone_day parms tt,( )←

out_ann Gray_zone_ann parms tt,( )←

out augment out_day out_ann,( )←

out

:=
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3.11.1  Gray Zone and Performance Curve Computation for the Daily Standard 
 

Input:  The vector parms of input parameters and the output of the Gen_scaled_dist 
function. 

 

 
 

Gray_zone_day parms tt,( ) min2 min tt 0〈 〉( )←

max2 max tt 1〈 〉( )←

start_day floor
parms2 .0−

max2

⎛
⎜
⎝

⎞

⎠
←

end_day ceil
parms2 .75+

min2 .001+

⎛
⎜
⎝

⎞

⎠
←

delta2
end_day start_day−

100
←

ttest k〈 〉 P_obdv_ge_stnd start_day k delta2⋅+ 0, tt, parms,( )←

vk start_day k delta2⋅+←

k 0 100..∈for

L 0←

u 0←

L i← ttest 1 i, parms0<if

u i← ttest 0 i, 1 parms1−( )<if

i 0 cols ttest( ) 2−..∈for

out_day start_day end_day( )← ttest 1 L 1+, ttest 1 L,−( ) ttest 0 u 1+, ttest 0 u,−( )⋅ 0if

out_day start_day L
parms0 ttest 1 L,−

ttest 1 L 1+, ttest 1 L,−

⎛⎜
⎜⎝

⎞

⎠
+ u

1 parms1−( ) ttest 0 u,−

ttest 0 u 1+, ttest 0 u,−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

delta2⋅+← otherwise

plot_data augment ttestT v,( )←

out_day 0 2, 0←

stack plot_data out_day,( )

:=
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3.11.2  Gray Zone and Performance Curve Computation for the Annual Standard 
 

Input:  The vector parms of input parameters and the output of the Gen_scaled_dist 
function. 

 

 
 
 
 

Gray_zone_ann parms tt,( ) min1 min tt 2〈 〉( )←

max1 max tt 3〈 〉( )←

start_ann floor
parms3 .0−

max1

⎛
⎜
⎝

⎞

⎠
←

end_ann ceil
parms3 .5+

min1 .001+

⎛
⎜
⎝

⎞

⎠
←

delta
end_ann start_ann−

100
←

test k〈 〉 P_obdv_ge_stnd start_ann k delta⋅+ 2, tt, parms,( )←

vk start_ann k delta⋅+←

k 0 100..∈for

L 0←

u 0←

L i← test 1 i, parms0<if

u i← test 0 i, 1 parms1−( )<if

i 0 cols test( ) 2−..∈for

out_ann start_ann end_ann( )← test 1 L 1+, test 1 L,−( ) test 0 u 1+, test 0 u,−( )⋅ 0if

out_ann start_ann L
parms0 test 1 L,−

test 1 L 1+, test 1 L,−

⎛⎜
⎜⎝

⎞

⎠
+ u

1 parms1−( ) test 0 u,−

test 0 u 1+, test 0 u,−

⎡⎢
⎢⎣

⎤⎥
⎥⎦

+
⎡⎢
⎢⎣

⎤⎥
⎥⎦

delta⋅+← otherwise

out_ann 0 2, 0←

plot_data augment testT v,( )←

stack plot_data out_ann,( )

:=


